

# Pediatric Patients with Bronchiolitis Obliterans Syndrome (BOS): Dosing and Breath Simulation Experiments of Liposomal Cyclosporin A for Inhalation (L-CsA-i)

### Introduction

- Bronchiolitis obliterans syndrome (BOS) is a severe lung condition commonly occurring after lung transplant<sup>1</sup> or allogeneic hematopoietic stem cell transplantation<sup>2</sup> but is also seen as a result of other types of airway injury. The condition can affect patients at all ages and is recognized as a rare but debilitating condition in pediatric patients.<sup>3-5</sup>
- Regardless of preceding injury, BOS is characterized by T-cell-mediated inflammation and fibrosis of bronchiolar walls that reduces the diameter of the bronchioles and results in progressive and irreversible airflow obstruction<sup>6</sup>
- Currently, there are no approved therapies for BOS, and off-label use of oral therapies is limited by side effects and unproven efficacy<sup>1</sup>
- Cyclosporine is a potent anti-inflammatory agent that targets T cells.<sup>7</sup> When given systemically, however, it achieves low levels in the airways of the lungs,<sup>8</sup> and systemic administration is associated with renal<sup>7</sup> and hepatic toxicity<sup>8</sup>
- L-CsA-i, (Figure 1) a liposomal formulation of cyclosporin A, is being investigated for the treatment of BOS in two pivotal clinical trials: BOSTON-1 (NCT03657342) and BOSTON-2 (NCT03656926)

Figure 1. Investigational liposomal cyclosporin A (L-CsA-i): Lipophilic drug molecules are contained within the phospholipid bilayer. Lyophilized L-CsA-i, which is stable at room temperature, is dissolved in saline before use.



- L-CsA-i is administered as an aerosolized drug via an investigational eFlow<sup>®</sup> Technology nebulizer (PARI Pharma GmbH), optimized for the delivery of L-CsA-i (Figure 2). The aerosol characteristics have been previously described for adult users (Breath Therapeutics, data on file).
- Lungs grow in size as children mature. Beginning at about 10 years of age, lung function, structure, and surface area are comparable to that of adults.<sup>9-11</sup>
- A 5-mg dose of L-CsA-i is being considered for children aged 6-11 years on the basis of comparisons of lung weight from toxicology studies of animals and children, as well as data from clinical trials in children aged 6 to 11 years
  - Although the safety of L-CsA-i has not been investigated in this age group, limited adverse events have been reported for 5 mg and 10 mg doses in adults<sup>12</sup>
- The objective of this simulation study was to characterize and support dose selection for future studies of L-CsA-i for the treatment of BOS in pediatric patients





#### Table 1. Comparison of Child and Adult Simulated Breathing Patterns

## N. R. Henig<sup>1</sup>; J. Paulukat<sup>2</sup>; A. Bucholski<sup>3</sup>; A. Copans<sup>4</sup>; A. Moreno Galdo<sup>5</sup>

<sup>1</sup>Kezar Life Sciences, South San Francisco, CA, United States; <sup>2</sup>Breath Therapeutics, a Zambon company, Menlo Park, CA, United States; <sup>5</sup>Hospital Universitari Vall d'Hebron, Barcelona, Spain

### Introduction (cont'd)

Figure 2. The investigational eFlow<sup>®</sup> Technology nebulizer handset (A) optimized for L-CsA-i, and eTrack<sup>®</sup> Controller (B). The eFlow<sup>®</sup> Technology nebulizes liquid drugs with a perforated vibrating membrane, generating an aerosol with a high percentage of droplets in a respirable size range.

#### Methods

• Investigational eFlow<sup>®</sup> Technology nebulizer handsets (N=5), along with 1 eTrack<sup>®</sup> Controller (Figure 3) were tested with two dose strengths (5 mg and 10 mg) of L-CsA-i for breath simulation experiments and laser diffraction measurements using a child breathing pattern (according to Ph. Eur. monograph 2.9.44), compared with L-CsA-i 10 mg for the adult breathing pattern<sup>13</sup>

Reported parameters included delivered dose, respirable dose, and mass median diameter<sup>13,14</sup>

Accepted assumptions for child versus adult breathing patterns were evaluated and are summarized in Table 1.

#### **Figure 3. Setup for Breath Simulation Experiments**



|                           | Child Breathing Pattern <sup>13</sup> | Adult Breathing Pattern |
|---------------------------|---------------------------------------|-------------------------|
| dal volume                | 155 ml                                | 500 ml                  |
| equency                   | 25 cycles/min                         | 15 cycles/min           |
| aveform                   | Sinusoidal                            | Sinusoidal              |
| halation/exhalation ratio | 1:2                                   | 1:1                     |

- Droplet size measurements for the calculation of respirable dose were performed by laser diffraction (Helos BR-OM, Sympatec). A schematic diagram of the setup is presented in Figure 4.

  - 2 min nebulization time; start of measurement after 1 min: measurement time 1 min
- Fill volumes (L-CsA-i): 1.25 mL (5 mg dose);
- 2.50 mL (10 mg dose)
- Breath simulation measurements:
- Delivered dose (mg and %)

- Recovery (%)
- production and automatic shut-off.
- Laser diffraction measurements
- Mass median diameter (µm)
- Respirable fraction: droplets
- <5 µm (%)
- Total output rate (mg/min) The following parameter was calculated:

- dose, compared with 10 mg

#### **Table 2. Summary of Breath Simulation Experiment Results**

Fill volume, mL Delivered dose, mg ( Respirable dose (<5 mg (SD) Mass median diamete Nebulization time, m Abbreviation: SD, standard deviation

Presented at the American Thoracic Society (ATS) Conference • Philadelphia, PA • August 5-10, 2020 (ePoster only)

### Methods (cont'd)

- Ambient temperature: 23.0 °C ± 2.0 - Ambient humidity:  $50.0\% \pm 5.0$ - Inspiratory flow: 15.0 L/min ± 0.5

- Exhaled drug amount (mg and %) - Residue in nebulizer (mg and %)

Nebulization time (end of aerosol

- Respirable dose ( $<5 \mu m$ ) = delivered dose (mg) x respirable fraction  $<5 \mu m$ 

#### Figure 4. Schematic Diagram of Particle Size Determination by Laser Diffraction (Helos **BR-OM**, Sympatec)



#### Results

For the 10 mg L-CsA-i dose with the child breathing pattern, delivered dose and respirable dose were slightly lower than that was seen in the adult pattern (**Table 2** and **Figure 5**) The 5 mg L-CsA-i dose had a corresponding 50% reduction in delivered dose and respirable

Mass median diameter for each dose was  $<3 \mu m$ 

Nebulization time (and volume) was increased for the higher dose but remained under 10 minutes in all simulations, with the lower dose having the fastest inhalation time

|             | 6-11 year-olds<br>Child Pattern<br>5 mg L-CsA-i | <b>12-17 year-olds</b><br><b>Child Pattern</b><br>10 mg L-CsA-i | <ul><li>18+ year-olds</li><li>Adult Pattern</li><li>10 mg L-CsA-i</li></ul> |
|-------------|-------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
|             | 1.25                                            | 2.5                                                             | 2.5                                                                         |
| SD)         | 3.16 (0.15)                                     | 6.20 (0.17)                                                     | 7.39 (0.22)                                                                 |
| ım),        | 2.79 (0.28)                                     | 5.42 (0.43)                                                     | 6.47 (0.71)                                                                 |
| er, µm (SD) | 2.95 (0.45)                                     | 2.90 (0.69)                                                     | 2.90 (0.69)                                                                 |
| nutes (SD)  | 6.08 (1.08)                                     | 9.11 (2.08)                                                     | 9.72 (2.61)                                                                 |

## Results (cont'd)

Figure 5. Delivered and Respirable doses of L-CsA-i using Child (5 mg and 10 mg L-CsA-i) and Adult (10 mg L-CsA-i) Breathing



### **Conclusions and Implications**

vielded similar delivered doses

- Administration of half that dose (5 mg L-CsA-i) with the child pattern of breathing yielded about half the delivered dose
- Given that alveolar surface area is smaller in children than in adults, a lower dose is believed to be appropriate
- L-CsA-i particle size (measured as mass median diameter) delivered by the investigational eFlow<sup>®</sup> Technology nebulizer system for L-CsA-i was about 3 µm, consistent with the ideal particle size for drug deposition in the small airways of the lungs (1-5 µm),<sup>15</sup> which are most directly affected by BOS<sup>1</sup>
  - Nebulization time was in the range well accepted by patients in previous clinical trials
- L-CsA-i must be used with the investigational eFlow<sup>®</sup> Technology nebulizer system to achieve these results
- Delivery of L-CsA-i using the investigational eFlow<sup>®</sup> Technology nebulizer system has the potential to achieve high drug concentrations in the bronchioles with low systemic exposure

## References

1. Weigt SS, et al. Semin Respir Crit Care Med. 2013;34(3):336-351. 2. Diab M, et al. Exp Clin Transplant. 2016;14(3):259-270. 3. Colom AJ and Teper AM Pediatr Pulmonol. 2009;44(11):1065-1069. 4. Colom AJ and Teper AM. Pediatr Pulmonol. 2019;54(2):212-219. 5. Colom AJ, et al. Thorax. 2006;61(6):503-506. 6. Bergeron A and Cheng G-S. Clin Chest Med. 2017;38(4):607-621. 7. Benvenuto LJ, et al. J Thorac Dis. 2018;10(5):3141-3155. 8. Korolczuk A, et al. BioMed Res Int. 2016;2016:5823271. 9. Jeffries HE and Martin LD. Respiratory Physiology. In: Wheeler DS, Wong HR, Shanley TP, eds. Pediatric Critical Care Medicine – Basic Science and Clinical Evidence. 1st ed. Springer-Verlag London; 2007; 349-360. 10. Davies G and Reid L. Thorax. 1970; 669-681. 11. Phalen RF and Prasad SB. Morphology of the Respiratory Tract. In: McClellan RO, Henderson RF, eds. Concepts in Inhalation Toxicology. 1st ed. USA: Hemisphere Publishing Corporation; 1989; 123-140. 12. Iacono A, et al. ERJ Open Res. 2019;5(4):00167-2019. 13. Pharmeuropa monograph 2.9.44 Preparations for Nebulisation: Characterisation. 14. Guideline on the Pharmaceutical Quality of Inhalation and Nasal Products. European Medicines Agency. June 21, 2006. Accessed July 16, 2020. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-pharmaceutical-quality-inhalation-nasalproducts\_en.pdf. 15. Gardenhire DS, et al. A Guide to Aerosol Delivery Devices for Respiratory Therapists, 4th edition. American Association for Respiratory Care; 2017.



Professional writing and editorial support were provided by MedLogix Communications, LLC, Itasca, Illinois, under the direction of the authors and were funded by Breath Therapeutics, a Zambon company.



J. Paulukat is a current employee of Breath Therapeutics, a Zambon company. N. R. Henig and A. Copans are former employees of Breath Therapeutics, a Zambon company. A. Bucholski is a current employee of PARI Pharma GmbH. A. Moreno Galdo has no disclosures





Administration of 10 mg L-CsA-i with the child and adult patterns of breathing

#### **Author Disclosures**

