Use Of Functional Respiratory Imaging (FRI) To Explore Drug Delivery And Lung Deposition Of Inhaled Liposomal Cyclosporine A (L-CsA-i) In Patients After Lung Transplantation

Introduction

Functional Respiratory Imaging (FRI)¹

- FRI is a validated computational fluid dynamics (CFD)-based technique using aerosol delivery performance profiles, patients' high-resolution lung CT scans (HRCT) and realistic inhalation profiles to simulate aerosol lung deposition
- FRI provides quantifiable measures of drug performance, contributing to clinical proof of concept
- FRI-based biomarkers have been investigated as early indicators of bronchiolitis obliterans syndrome (BOS) in lung transplant patients

Bronchiolitis Obliterans Syndrome

- BOS is a progressive obstructive airway disease characterized by inflammation and fibrosis that results in respiratory failure and death²
- Currently there are no approved therapies for BOS

Liposomal cyclosporine A for inhalation (L-CsA-i)

- L-CsA-i is a novel proprietary liposomal formulation of cyclosporine A designed for inhaled delivery to the lungs administered via an Investigational eFlow[®] Technology nebulizer system (PARI Pharma GmbH)
- L-CsA-i is being evaluated for the treatment of BOS in patients following lung or allogeneic hematopoietic stem cell transplantation³

Study Objective

• The aim of this study was to characterize the airway deposition of L-CsA-i in lung transplant recipients with BOS using FRI

Methods

Subject Selection

- From a reference library of HRCTs, subjects who were bilateral lung transplant recipients and had two or more HRCTs from different timepoints were selected
- Twenty representative subjects without evidence of BOS at the first timepoint were identified; 10 subjects developed clinical characteristics and imaging consistent with the diagnosis of BOS while 10 did not
- Both groups were matched at baseline for age, height and FEV_1

FRI Computational Modeling

- In-silico three-dimensional models of the patient-specific conducting airways and lung lobes were extracted from the HRCT scans and converted to a computational domain
- L-CsA-i drug delivery parameters were incorporated to calculate aerosol airway deposition

used to administer L-CsA-i using continuous nebulization • The profile is based on a tidal breathing of non-pathological lungs with a tidal volume of 500 mL, a respiratory rate of 12 breaths/minute and an inspiratory:expiratory ratio of 1:2 (Fig. 1)

• Aerosol characteristics of the eFlow[®] for L-CsA-i were evaluated, results from day 15 were used in this analysis (Table 1)

• The filling volume per dose was 2.5 mL L-CsA-i (10 mg dose)

Benjamin Mignot¹, Cedric Van Holsbeke¹, Jens Paulukat², Amanda Copans³, Noreen Roth Henig⁴ ¹FLUIDDA NV, Kontich, Belgium; ²Breath Therapeutics GmbH, München, Germany; ³Former employee of Breath Therapeutics, a Zambon company, Menlo Park, CA, USA; ⁴Kezar Life Sciences, South San Francisco, CA, USA

Methods (cont'd)

Inhalation Profiles

• An optimized Investigational eFlow[®] Technology nebulizer system was

Figure 1. **Breathing Profile**

Particle Characteristics

Table 1. L-CsA-i Particle Characteristics⁴

Parameter	Day 1	Day 15	Day 30							
Delivered Dose (%)	69.1 ± 6.2	69.7 ± 5.0	70.5 ± 2.0							
MMAD (μm)	3.5 ± 0.0	3.5 ± 0.1	3.4 ± 0.1							
GSD ()	1.6 ± 0.0	1.6 ± 0.0	1.6 ± 0.0							
FPF <5 μm (%)	76.5 ± 1.3	78.7 ± 0.8	81.0 ± 1.9							
Nebulization Time	7.4 ± 0.4	8.9 ± 1.0	10.2 ± 1.4							
ass Median Aerodynamic Diameter (MMAD), Geometric Standard Deviation (GSD), Fine Particle Fraction (FPF)										

Results

Patient Characteristics

• In those who developed BOS, mean age was 59.1 years, height was 172.6 cm, and FEV1 was 76.2 (%p) at baseline (t_0), compared to 58.6 years, 171.6 cm and 77.9 (%p) in those who did not develop BOS (Table 2)

Table 2. Characteristics of Those With and Without BOS

Did not develop BOS				Developed BOS					
er	Age (y)	Height (cm)	FEV1 (L)	FEV1 (%p)	Gender	Age (y)	Height (cm)	FEV1 (L)	FEV1 (%p)
	37.2	165.1	3.46	50.49	М	51.1	175.9	4.46	105.20
	58.8	170.2	3.12	118.38	М	57.3	179.1	4.49	91.30
	56.1	165.1	3.71	83.46	Μ	61.2	188.0	4.90	70.15
	60.9	193.0	5.19	81.64	Μ	41.8	167.6	4.23	88.16
	61.5	182.9	4.60	69.04	Μ	57.2	188.0	5.00	65.06
	60.4	177.8	4.33	65.51	Μ	62.6	158.5	3.16	79.71
	61.2	153.7	2.33	86.06	Μ	66.0	172.7	3.89	62.21
	63.9	160.0	2.54	84.84	F	64.7	165.1	2.74	60.76
	61.6	167.6	3.71	57.32	F	59.2	162.6	2.78	61.43
	60.9	180.3	4.46	82.37	М	70.3	168.9	3.56	78.23
ge	58.3	171.6	3.74	77.91	Average	59.1	172.6	3.92	76.22

Deposition of Delivered Dose

- percent of delivered dose (Fig. 2A)

Figure 2. Deposition of Delivered Dose: (A) Intrathoracic; (B) Peripheral; (C) Central to peripheral ratio

Results (cont'd)

Intrathoracic deposition was similar at both time points in both BOS and non-BOS developers, with a mean and standard deviation of 51.90±1.88

Of the deposited dose, patients who did not develop BOS had a slight increase in deposition to the peripheral airways, while the BOS group has a slight decrease in deposition to the peripheral airways (+1.00±2.68 versus -2.85±5.69 percent of delivered dose, Fig. 2B)

A similar change was also seen in the central to peripheral ratio which went from 0.73±0.24 to 0.68±0.24 in the non-BOS and from 0.83±0.30 to 1.03±0.37 in the BOS groups, respectively (Fig. 2C)

Conclusions

- FRI has potential to become a useful biomarker for BOS patients
- and unaffected airways
- BOS, has >50% deposition when delivered via an optimized
- FRI also shows that L-CsA-i can reach affected airways at similar concentrations as unaffected airways

- Barbosa E et al. Acad Radiol. 2018 Sep;25(9):1201-1212.
- Barker AF et al. N Engl J Med 2014;370:1820-8.
- Breath Therapeutics, Data on file, 2019

Acknowledgment and Funding

- This study was independently conducted by FLUIDDA and funded by Breath Therapeutics, a Zambon company
- Benjamin Mignot and Cedric Van Holsbeke are employees of FLUIDDA
- Jens Paulukat is an employee of Breath Therapeutics, a Zambon company
- Amanda Copans is former consultant of Breath Therapeutics, a Zambon company
- Noreen Henig is former employee of Breath Therapeutics, a Zambon company

FRI is useful to model aerosolized L-CsA-i deposition in BOS affected

FRI shows that L-CsA-i, a drug under development for the treatment of dational eFlow[®] Technology nebulizer system to target airways

References

ClinicalTrials.gov Identifiers: NCT03656926, NCT03657342, NCT04107675

Poster 12603