

European Society

for Blood and Marrow Transplantation

Liposomal Cyclosporine A for Inhalation (L-CsA-i) to **Treat Bronchiolitis Obliterans Syndrome (BOS): Novel Formulation With Therapeutic Potential for** Patients With BOS Following allo-HSCT

Noreen Roth Henig¹, Emilie Hofstetter², Dominik Kappeler³, Gerhard Boerner³

¹Breath Therapeutics Inc., Menlo Park, California, USA; ²HealthStrat Consulting, Munich, Bavaria, Germany; ³Breath Therapeutics GmbH, Munich, Bavaria, Germany

BACKGROUND

- Bronchiolitis obliterans syndrome (BOS) is a fatal, rapidly progressive lung disease caused by T-cell-mediated inflammation that leads to blockage of the bronchioles, resulting in respiratory failure and death^{1,2}
- Approximately 4% to 10% of patients who undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT) will develop BOS^{1,3} (**Fig 1**)
 - 72% to 100% develop BOS as a respiratory form of chronic graft-versus-host disease (cGVHD)

RESULTS

- 1068 patient-months of L-CsA-i use were collected from 85 patients with LTx
 - L-CsA-i was well tolerated and no patients discontinued due to intolerability
 - Most common reported symptoms were: cough 22%; dyspnoea 7%; pharyngeal soreness 1%; and wheezing 1%
- L-CsA-i administered 5 mg or 10 mg bid by inhalation results in nominal serum levels and does not accumulate over time (**Fig 5**)
 - Maximum serum CsA concentration was 57.42 ± 34.26 ng/mL

- Median time to BOS diagnosis ranges from 273 to 547 days post-transplant in literature
- A diagnosis of BOS confers a significant increase in the risk of transplant-related mortality^{1,4} (**Fig 2**)

Figure 1. The Overall Prevalence of BOS in Patients With allo-HSCT Has Been Found to Be Between 4% and 10%

Figure 2. BOS Is Associated With Increased Mortality in **Patients With allo-HSCT**

The histopathology of BOS after allo-HSCT and lung transplantation (LTx) is identical^{2,5,6} (**Fig 3**)

Figure 3. The Histopathology of BOS After allo-HSCT and Lung Transplantation Is Identical

Histopathology of: A. Bronchiole of a healthy subject¹

- Trough levels for up to 2 years of daily administration were 4-5 ng/mL (compared to systemic CsA target levels of 200-300 ng/mL)⁹
- Lung function (FEV₁) did not continue to decline in patients with LTx who received L-CsA-i (Fig 6)

From Study 12011.201, Clinical Study Report 2015.

Figure 6. Lung Function Is Stabilised in Patients With LTx Treated With L-CsA-i

B. Bronchiole of a BOS patient after LTx¹

C. Bronchiole of a BOS patient after HSCT^{2,3}

1. Barker AF, et al. N Engl J Med. 2014;370:1820-1828; 2. Yoshihara S, et al. Biol Blood Marrow Transplant. 2007;13:749-759; 3. Afessa B, et al. Bone Marrow Transplant. 2001;28:425-434.

- There is no approved therapy for the treatment or prevention of BOS⁷
- Liposomal Cyclosporine A for inhalation (L-CsA-i) is a true liposome of cyclosporine A designed for inhaled delivery to the lungs (administered via the high-performance PARI eFlow[®] Nebulizer System) (**Fig 4**)

Figure 4. Breath Therapeutics' Drug-Device Combination Is Designed to Rapidly Deliver High Concentrations of Drugs to the Site of Action in the Lung

Liposomal Cyclosporine A for inhalation (L-CsA-i) is a true liposome of cyclosporine A designed for inhaled delivery to the lungs

The L-CsA-i eFlow[®] (PARI Pharma GmbH) has been specifically designed for use with Breath Therapeutics' L-CsA-i formulation

The BOSTON program combines L-CsA-i with the high-performance, drug-specific L-CsA-i eFlow[®] for precise and fast drug delivery into the small airway of the lungs with no or minimal systemic exposure to cyclosporine

FEV₁, Forced Expiratory Volume in the first second; L, liters; SOC, standard of care From Study Al001, Clinical Study Report 2017.

CONCLUSIONS

- The pathophysiology of BOS is the same regardless of aetiology
- L-CsA-i is an investigational drug that to date has been demonstrated to be safe and well tolerated in >1000 patient-months of exposure
- BOSTON-1 and BOSTON-2, paired Phase 3 efficacy and safety studies of L-CsA-i for the treatment of BOS following LTx, are ongoing (**Fig 7**)
- A safety study of L-CsA-i for the treatment of BOS following allo-HSCT is planned

Figure 7. BOSTON Clinical Development Program

Early studies of L-CsA-i for the prevention of BOS in lung transplant recipients demonstrated clinical benefit^{8,9}

METHODS

- Retrospective review of two clinical studies of L-CsA-i (isotonic, 4 mg/mL) for BOS associated with LTx
 - Patients were randomized to receive L-CsA-i plus standard of care (SOC) vs SOC alone⁸, or L-CsA-i plus SOC vs placebo plus SOC⁹
 - Patients in the L-CsA-i arms received either 5 mg (single transplant) or 10 mg (double transplant) bid via inhalation^{8,9}
- Blood samples for PK analysis were collected before inhalation and after inhalation, at 15, 30, and 60 mins post dosing and 2, 4, 8, and 12 hrs post dosing
- Local and general tolerability of L-CsA-i were investigated

Open-label Extension of BOSTON-1 and BOSTON-2 Studies

BOSTON 4 Phase 2: L-CsA-i for BOS in HSCT

> **BOSTON 5** Pediatric Study: L-CsA-i for BOS in Any Aetiology

Ongoing and planned trials for the development of L-CsA-i to treat patients with BOS

BOSTON, Bronchiolitis Obliterans Syndrome Treated On Nebulisation.

REFERENCES

1. Au BKC, et al. Biol Blood Marrow Transplant. 2011;17:1072-1078. 2. Barker AF, et al. N Engl J Med. 2014; 370:1820-1828. 3. Aguilar PR, et al. Transplantation. 2016;100:272-283. 4. Kulkarni HS, et al. J Heart Lung Transplant. 2019;38:5-16. 5. Yoshihara S, et al. *Biol Blood Marrow Transplant*. 2007;13:749-759. 6. Afessa B, et al. *Bone Marrow* Transplant. 2001;28:425-434. 7. Meyer KC, et al. Eur Respir J. 2014;44:1479-1503. 8. Study Al001, 2017, submitted. 9. Study 12011.201, Clinical Study Report, 2015.

ACKNOWLEDGEMENTS

We extend our thanks to Dr. Aldo Iacono, MD, who served as the Principal Investigator for the AI001 clinical study.

www.ebmt.org #EBMT19